3,900 research outputs found

    Extended transition rates and lifetimes in Al I and Al II from systematic multiconfiguration calculations

    Full text link
    Multiconfiguration Dirac-Hartree-Fock (MCDHF) and relativistic configuration interaction (RCI) calculations were performed for 28 and 78 states in neutral and singly ionized aluminium, respectively. In Al I, the configurations of interest are 3s2nl3s^2nl for n=3,4,5n=3,4,5 with l=0l=0 to 44, as well as 3s3p23s3p^2 and 3s26l3s^26l for l=0,1,2l=0,1,2. In Al II, the studied configurations are, besides the ground configuration 3s23s^2, 3snl3snl with n=3n=3 to 66 and l=0l=0 to 55, 3p23p^2, 3s7s3s7s, 3s7p3s7p and 3p3d3p3d. Valence and core-valence electron correlation effects are systematically accounted for through large configuration state function (CSF) expansions. Calculated excitation energies are found to be in excellent agreement with experimental data from the NIST database. Lifetimes and transition data for radiative electric dipole (E1) transitions are given and compared with results from previous calculations and available measurements, for both Al I and Al II. The computed lifetimes of Al I are in very good agreement with the measured lifetimes in high-precision laser spectroscopy experiments. The present calculations provide a substantial amount of updated atomic data, including transition data in the infrared region. This is particularly important since the new generation of telescopes are designed for this region. There is a significant improvement in accuracy, in particular for the more complex system of neutral Al I. The complete tables of transition data are available

    Dynamical breakdown of the Ising spin-glass order under a magnetic field

    Full text link
    The dynamical magnetic properties of an Ising spin glass Fe0.55_{0.55}Mn0.45_{0.45}TiO3_3 are studied under various magnetic fields. Having determined the temperature and static field dependent relaxation time τ(T;H)\tau(T;H) from ac magnetization measurements under a dc bias field by a general method, we first demonstrate that these data provide evidence for a spin-glass (SG) phase transition only in zero field. We next argue that the data τ(T;H)\tau(T;H) of finite HH can be well interpreted by the droplet theory which predicts the absence of a SG phase transition in finite fields.Comment: 4 pages, 5 figure

    Light Interception and Dry Matter Yield in Grass/Legume Mixtures

    Get PDF
    The influence of grass variety on light interception and dry matter yield in a grass/clover mixture was studied. Two varieties of timothy (Phleum pratense L.) and five varieties of ryegrass (Lolium spp) as components in a mixture were compared during the spring period up to the first cut of the third harvest year. By replacing the timothy variety in the mixture both light interception and dry matter yield were significantly affected. The leaf orientation was thought to be a contributing factor with erect leaves intercepting less light. There were no significant differences neither in light interception nor in yield between the mixtures with different ryegrass varieties, not even between the earliest and the latest varieties being the two contrasts in light interception

    Interaction effects and transport properties of Pt capped Co nanoparticles

    Get PDF
    We studied the magnetic and transport properties of Co nanoparticles (NPs) being capped with varying amounts of Pt. Beside field and temperature dependent magnetization measurements we performed delta-M measurements to study the magnetic interactions between the Co NPs. We observe a transition from demagnetizing towards magnetizing interactions between the particles for an increasing amount of Pt capping. Resistivity measurements show a crossover from giant magnetoresistance towards anisotropic magnetoresistance

    Spin glass behavior in an interacting gamma-Fe2O3 nanoparticle system

    Get PDF
    In this paper we investigate the superspin glass behavior of a concentrated assembly of interacting maghemite nanoparticles and compare it to that of canonical atomic spin glass systems. ac versus temperature and frequency measurements show evidence of a superspin glass transition taking place at low temperature. In order to fully characterize the superspin glass phase, the aging behavior of both the thermo-remanent magnetization (TRM) and ac susceptibility has been investigated. It is shown that the scaling laws obeyed by superspin glasses and atomic spin glasses are essentially the same, after subtraction of a superparamagnetic contribution from the superspin glass response functions. Finally, we discuss a possible origin of this superparamagnetic contribution in terms of dilute spin glass models

    Constraining dark matter halo properties using lensed SNLS supernovae

    Full text link
    This paper exploits the gravitational magnification of SNe Ia to measure properties of dark matter haloes. The magnification of individual SNe Ia can be computed using observed properties of foreground galaxies and dark matter halo models. We model the dark matter haloes of the galaxies as truncated singular isothermal spheres with velocity dispersion and truncation radius obeying luminosity dependent scaling laws. A homogeneously selected sample of 175 SNe Ia from the first 3-years of the Supernova Legacy Survey (SNLS) in the redshift range 0.2 < z < 1 is used to constrain models of the dark matter haloes associated with foreground galaxies. The best-fitting velocity dispersion scaling law agrees well with galaxy-galaxy lensing measurements. We further find that the normalisation of the velocity dispersion of passive and star forming galaxies are consistent with empirical Faber-Jackson and Tully-Fisher relations, respectively. If we make no assumption on the normalisation of these relations, we find that the data prefer gravitational lensing at the 92 per cent confidence level. Using recent models of dust extinction we deduce that the impact of this effect on our results is very small. We also investigate the brightness scatter of SNe Ia due to gravitational lensing. The gravitational lensing scatter is approximately proportional to the SN Ia redshift. We find the constant of proportionality to be B = 0.055 +0.039 -0.041 mag (B < 0.12 mag at the 95 per cent confidence level). If this model is correct, the contribution from lensing to the intrinsic brightness scatter of SNe Ia is small for the SNLS sample.Comment: 11 pages, 7 figures, accepted for publication in MNRA

    Shifting foundations: the mechanical cell wall and development.

    Get PDF
    The cell wall has long been acknowledged as an important physical mediator of growth in plants. Recent experimental and modelling work has brought the importance of cell wall mechanics into the forefront again. These data have challenged existing dogmas that relate cell wall structure to cell/organ growth, that uncouple elasticity from extensibility, and those which treat the cell wall as a passive and non-stressed material. Within this review we describe experiments and models which have changed the ways in which we view the mechanical cell wall, leading to new hypotheses and research avenues. It has become increasingly apparent that while we often wish to simplify our systems, we now require more complex multi-scale experiments and models in order to gain further insight into growth mechanics. We are currently experiencing an exciting and challenging shift in the foundations of our understanding of cell wall mechanics in growth and development.Work in the authors’ groups is funded by The Gatsby Charitable Foundation (GAT3396/PR4, SB; GAT3395/PR4, HJ), the Swedish Research Council (VR2013‐4632, HJ), the Knut and Alice Wallenberg Foundation via ShapeSystems (HJ), and the BBSRC (BB.L002884.1, SB).This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.pbi.2015.12.00

    Immersive Composition for Sensory Rehabilitation: 3D Visualisation, Surround Sound, and Synthesised Music to Provoke Catharsis and Healing

    Get PDF
    There is a wide range of sensory therapies using sound, music and visual stimuli. Some focus on soothing or distracting stimuli such as natural sounds or classical music as analgesic, while other approaches emphasize the active performance of producing music as therapy. This paper proposes an immersive multi-sensory Exposure Therapy for people suffering from anxiety disorders, based on a rich, detailed surround-soundscape. This soundscape is composed to include the users’ own idiosyncratic anxiety triggers as a form of habituation, and to provoke psychological catharsis, as a non-verbal, visceral and enveloping exposure. To accurately pinpoint the most effective sounds and to optimally compose the soundscape we will monitor the participants’ physiological responses such as electroencephalography, respiration, electromyography, and heart rate during exposure. We hypothesize that such physiologically optimized sensory landscapes will aid the development of future immersive therapies for various psychological conditions, Sound is a major trigger of anxiety, and auditory hypersensitivity is an extremely problematic symptom. Exposure to stress-inducing sounds can free anxiety sufferers from entrenched avoidance behaviors, teaching physiological coping strategies and encouraging resolution of the psychological issues agitated by the sound
    corecore